A Practical Splitting Method for Stiff SDEs with Applications to Problems with Small Noise

نویسندگان

  • Héctor D. Ceniceros
  • George O. Mohler
چکیده

We present an easy to implement drift splitting numerical method for the approximation of stiff, nonlinear stochastic differential equations (SDEs). The method is an adaptation of the semi-implicit backward differential formula (SBDF) multistep method for deterministic differential equations and allows for a semi-implicit discretization of the drift term to remove high order stability constraints associated with explicit methods. For problems with small noise, of amplitude , we prove that the method converges strongly with order O(Δt2 + Δt + 2Δt1/2) and thus exhibits second order accuracy when the time step is chosen to be on the order of or larger. We document the performance of the scheme with numerical examples and also present as an application a discretization of the stochastic Cahn–Hilliard equation which removes the high order stability constraints for explicit methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving multilevel Monte Carlo for stochastic differential equations with application to the Langevin equation.

This paper applies several well-known tricks from the numerical treatment of deterministic differential equations to improve the efficiency of the multilevel Monte Carlo (MLMC) method for stochastic differential equations (SDEs) and especially the Langevin equation. We use modified equations analysis as an alternative to strong-approximation theory for the integrator, and we apply this to intro...

متن کامل

Second weak order explicit stabilized methods for stiff stochastic differential equations

We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of onestep stabilized methods with extended stability domains and do not suffer from stepsize reduction that standard explicit methods face. The family is based on the classical stabilized methods of order two for deterministic p...

متن کامل

S-rock Methods for Stiff Itô Sdes

In this paper, we present a class of explicit numerical methods for stiff Itô stochastic differential equations (SDEs). These methods are as simple to program and to use as the well-known Euler-Maruyama method, but much more efficient for stiff SDEs. For such problems, it is well known that standard explicit methods face step-size reduction. While semi-implicit methods can avoid these problems ...

متن کامل

An adaptive time step scheme for a system of stochastic differential equations with multiple multiplicative noise: chemical Langevin equation, a proof of concept.

Models involving stochastic differential equations (SDEs) play a prominent role in a wide range of applications where systems are not at the thermodynamic limit, for example, biological population dynamics. Therefore there is a need for numerical schemes that are capable of accurately and efficiently integrating systems of SDEs. In this work we introduce a variable size step algorithm and apply...

متن کامل

On second derivative 3-stage Hermite--Birkhoff--Obrechkoff methods for stiff ODEs: A-stable up to order 10 with variable stepsize

Variable-step (VS) second derivative $k$-step $3$-stage Hermite--Birkhoff--Obrechkoff (HBO) methods of order $p=(k+3)$, denoted by HBO$(p)$ are constructed as a combination of linear $k$-step methods of order $(p-2)$ and a second derivative two-step diagonally implicit $3$-stage Hermite--Birkhoff method of order 5 (DIHB5) for solving stiff ordinary differential equations. The main reason for co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Multiscale Modeling & Simulation

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007